Buiding Mulit-level Recurrent Neural Network Structure to Analyse Financial Indice Data
-
摘要: 我们构建了一种多层循环神经网络来对金融股票指标数据进行测试,分析多种指标算法组合用来预测股票走势的 可靠性。在实际的股票分析当中,通常会选择不同的技术指标或者指标组合对趋势进行判断,但在验证这些金融技术指标组 合可靠性上需要时间和实践去验证,利用循环神经网络去分析过滤指标数据生成预测数据,通过对预测数据和真实数据对比, 我们可以验证出哪个股票技术指标组合对股票投资决策是可靠的。Abstract: We propose a kind of recurrent neural network structure for analysis stock indicators and its composed indicator sets which are used for predicting stock trend. Traditional method to analysis stock trend is using kinds of indicators algorithm, but estimation of effective indicators need long period testing time to evaluate. We compose a multiple rnn cell layers neural network to receive stock data, and output prediction result data basing on sets of indicators’ data which are put through into the network as well. With comparing prediction result and real data, it is helpful to choose composition of stock indicators for investment decision strategy and saving time.
-
[1] 冯先成,周密,徐川.基于 Android 的百度地图多功能实现[J].武汉工程大学学报,2016(5):490-494. [2] 张波,赵双明.基于 Android 平台的百度地图开发研究[J].软件导刊,2015(7):96-99. -
点击查看大图
计量
- 文章访问数: 138
- HTML全文浏览量: 21
- PDF下载量: 4
- 被引次数: 0
下载: