Overview of Data Classification Algorithms for Big Data Mining
-
摘要: 随着信息技术领域的快速发展,各种数据信息量激增,大数据技术作为收集、存储、管理海量数据进而分析、预测 某类人群习惯特点乃至某个行业发展趋势的重要手段,为管理决策者提供传统处理模式不能比拟的全面策略依据。这其中数 据挖掘技术发挥了至关重要的作用。本文主要从作者实际工作经验入手,简要的分析大数据挖掘阶段的数据分类算法技术, 希望可以为有关人员带来帮助。Abstract: With the rapid development of information technology, various kinds of data information surge,as an important means of collecting, storing and managing massive data to analyze and predict the habits and characteristics of a certain group of people and even the development trend of a certain industry, big data technology provides a comprehensive strategic basis for management decision makers that traditional processing mode cannot match. Among them, data mining technology plays a vital role.Based on the author's actual work experience, this paper briefly analyzes the data classification algorithm technology in the stage of big data mining, hoping to bring some help to relevant personnel.
-
Key words:
- Big data /
- Data mining /
- Classification algorithm
-
[1] 柯熙政,张伟志,刘娟花.多MEMS陀螺数据融合系统的设计和实现[J].仪器仪表学报,2017(8):2062-2070. [2] 吉训生,王寿荣,许宜申,等.自适应 Kalman 滤波在 MEMS 陀螺仪信号处理中的应用[J].传感器与微系统,2006(9):79-81+85. [3] 崔冰波,陈熙源,龚政仰.基于经验模态概率分布的光纤陀螺信号处理[J].中国惯性技术学报,2015(5):690-695. [4] N.E.Huang et al.,The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,(in English)[J].Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,1998,454(3):903-995. [5] P.Flandrin,G.Rilling,and P.Goncalves, Empirical mode decomposition as a filter bank,(in English)[J].Ieee Signal Processing Letters,2004,11(02):112-114. -

计量
- 文章访问数: 637
- HTML全文浏览量: 95
- PDF下载量: 87
- 被引次数: 0