Application of an Improved Non Maximum Suppression Algorithm in YOLOv3 Model
-
摘要: YOLOv3目标检测模型在进行候选区域确定时大多使用非极大值抑制算法,这类算法在多目标检测任务可能出现重 复检测等问题,针对这一问题,本文在前人研究的soft-NMS算法基础上进行优化,提出I-NMS算法,并将该算法应用到YOLOv3 算法中进行建模,通过实验对比验证表明,I-NMS算法有助于解决YOLOv3算法中的重复检测问题。Abstract: Most of the YOLOv3 target detection models use non maximum suppression algorithm when determining the candidate region. This kind of algorithm may have the problem of repeated detection in multi-target detection task. Aiming at this problem, this paper optimizes the soft NMS algorithm studied by predecessors and proposes I-NMS algorithm. The algorithm is applied to YOLOv3 algorithm for modeling, and the experimental results show that the algorithm is effective I-NMS algorithm is helpful to solve the problem of duplicate detection in yolov3 algorithm.
-
Key words:
- Object detection /
- YOLOv3 algorithm /
- Non maximum suppression
-
[1] 王元元.离散数学教程[M].北京:高等教育出版社,2015. [2] 屈婉玲,耿素云,张立昂.离散数学[M].北京:高等教育出版社,2015. -

计量
- 文章访问数: 205
- HTML全文浏览量: 45
- PDF下载量: 11
- 被引次数: 0