Volume 39 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
TIAN Yi, LI Ji-xiu, ZHONG Yan-qing, YAN Yue-peng, MENG Zhen, ZHANG Xing-cheng. Random Noise Compensation Method for MEMS Accelerometer Based onEMD Decomposition[J]. DIGITAL TECHNOLOGY & APPLICATION, 2021, 39(1): 105-107. doi: 10.19695/j.cnki.cn12-1369.2021.01.33
Citation: TIAN Yi, LI Ji-xiu, ZHONG Yan-qing, YAN Yue-peng, MENG Zhen, ZHANG Xing-cheng. Random Noise Compensation Method for MEMS Accelerometer Based on EMD Decomposition[J]. DIGITAL TECHNOLOGY & APPLICATION, 2021, 39(1): 105-107. doi: 10.19695/j.cnki.cn12-1369.2021.01.33

Random Noise Compensation Method for MEMS Accelerometer Based on EMD Decomposition

doi: 10.19695/j.cnki.cn12-1369.2021.01.33
  • Received Date: 2020-11-10
  • Rev Recd Date: 2021-01-17
  • Available Online: 2021-09-23
  • Publish Date: 2021-01-25
  • In order to improve the measurement accuracy of MEMS accelerometers, a stochastic error compensation method based on empirical mode decomposition (EMD) is adopted. In this paper the accelerometer signal is decomposed into intrinsic mode function (IMFs) and a residual component by EMD algorithm, and IMF is divided into three categories: noise dominant component, signal/noise mixed component and signal dominant component; noise reduction of signal/noise mixed component is realized by threshold processing, the signal/noise mixed component after noise reduction and the dominant component of the signal are reconstructed to obtain the accelerometer signal after noise reduction. It is proved that the algorithm can effectively improve the measuring accuracy of the accelerometer through the verification of dynamic data and static data acquisition.

     

  • loading
  • [1]
    何凯华.基于目标检测网络的交通标志识别[J].软件工程,2020,23(10):19-22.
    [2]
    李杰.基于卷积神经网络的交通标志检测算法研究[D].武汉:华中科技大学,2019.
    [3]
    Girshick R.Fast r-cnn[C].Proceedings of the IEEE international conference on computer vision,2015:1440-1448.
    [4]
    Redmon J,Farhadi A.Yolov3:An incremental improvement[J].Computer Vision and Pattern Recognition,2018,22(4):17-23.
    [5]
    王艺皓,丁洪伟,李波,等.复杂场景下基于改进 YOLOv3 的口罩佩戴检测算法[J/OL].计算机工程:1-13[2020-10-30

    ].https://doi.org/10.19678/j.issn.1000-3428.0058802.
    [6]
    木盏.yolo 系列之 yolo v3 深度解析[OL].https://muzhan.blog.csdn.net/article/details/82660381,2018-09.
    [7]
    杜金航,何宁.基于改进的YOLOv3道路车辆实时检测[J].计算机工程与应用,2020,56(11):26-32.
    [8]
    吕铄,蔡烜,冯瑞.基于改进损失函数的 YOLOv3 网络[J].计算机系统应用,2019,28(2):1-7.
    [9]
    徐融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(7):30-33.
    [10]
    江金洪,鲍胜利,史文旭,等.基于 YOLO v3 算法改进的交通标志识别算法[J].计算机应用,2020,40(8):2472-2478.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(8) Cited by()
    Proportional views
    Related
    Copyright © Editorial Department of Digital Technology and Application Supported by: Beijing Renhe Information Technology Co. Ltd

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return