Volume 39 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LU Wen-ling. Handwritten Character Recognition Based on BP Neural Network[J]. DIGITAL TECHNOLOGY & APPLICATION, 2021, 39(1): 64-66. doi: 10.19695/j.cnki.cn12-1369.2021.01.20
Citation: LU Wen-ling. Handwritten Character Recognition Based on BP Neural Network[J]. DIGITAL TECHNOLOGY & APPLICATION, 2021, 39(1): 64-66. doi: 10.19695/j.cnki.cn12-1369.2021.01.20

Handwritten Character Recognition Based on BP Neural Network

doi: 10.19695/j.cnki.cn12-1369.2021.01.20
  • Received Date: 2020-11-28
  • Rev Recd Date: 2021-01-17
  • Available Online: 2021-09-23
  • Publish Date: 2021-01-25
  • The article compares twoneural network models trained using TensorFlow on MNIST datasets, and optimizes parameters such as the number of neurons, activation function, learning rate, and optimizer. The results show that the simple neural network model can achieve high performance on handwriting recognition under sufficient training data sets, and the additional technical optimization greatly enhances the generalization ability and robustness of the model.

     

  • loading
  • [1]
    李丹.基于 BP 神经网络的多样本手写体字符识别[J].软件,2016,37(7):103-108.
    [2]
    许宜申,顾济华,陶智,等.基于改进BP神经网络的手写字符识别[J].通信技术,2011,44(5):106-109

    +118.
    [3]
    丁蒙,戴曙光,于恒.卷积神经网络在手写字符识别中的应用[J].软件导刊,2020,19(1):275-279.
    [4]
    黎育权.基于集成学习改进的卷积神经网络的手写字符识别[J].电子技术与软件工程,2018(9):167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (426) PDF downloads(45) Cited by()
    Proportional views
    Related
    Copyright © Editorial Department of Digital Technology and Application Supported by: Beijing Renhe Information Technology Co. Ltd

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return